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Abstract 
Limited studies on energy consumption in 
cities have been done to explore the effects 
of socioeconomic determinants of public 
health on urban energy use. This article 
examines the associations between these 
factors, including characteristics of 
occupied housing unit, household income, 
employment, education, dependency, 
poverty level, and crowded housing with 
urban building energy use. The available 
empirical data from the City of Chicago on 
socioeconomic indicators of public health 
2008-2012 and Chicago energy 
benchmarking 2016 and Chicago energy 
Usage 2010 were used. This research 
applied a machine learning approach based 
on the Artificial Neural Network (ANN) 
algorithm to predict the energy use 
intensity across Chicago, and several 
explanatory methods were extended to the 
model to help facilitate interpreting the 
results. And a cross-validation technique 
was employed to confirm the results. 
Findings suggest that all these 
socioeconomic determinants were strongly 
associated with energy use of residential 
buildings. Household income as the highest 
influential variable among them has a 
positive relationship with residential 
operational energy use. Further, urban 
building energy use was associated with 
urban form and building characteristics as 
well as various dimensions of 
socioeconomic determinants. Endeavors 
for reducing energy consumption in cities 
need to consider different dimensions of 
urban spatial patterns and socioeconomic 
status of public health. 

Keywords: Urban energy modeling, residential 
building energy use, public health, socioeconomic 
indicators 

Introduction 
Many cities across the world have started setting 
energy reduction goals and moving towards 
more sustainable and low carbon cities. In doing 
so, understanding energy consumption patterns 
and the effects of different factors on energy use 
is needed to address the energy efficiency 
targets and tackle the consequences of an 
increase in energy demand due to unprecedented 
population growth and uneven urbanization. 
The previous studies on energy consumption in 
cities tend to examine how urban attributes 
influence energy use with a focus on urban form, 
morphology, and sprawl characteristic 1,
building characteristics 2. However, there is
limited research that studies occupancy 
characteristics and human behavior 3 and
households’ socioeconomic status of public 
health on energy consumption in cities 4 . This
happens mainly due to the complex nature of 
human-related factors in urban systems and the 
fact that multifaceted models need to be 
developed that consider many factors 5. As data
is becoming more available and advances in 
artificial intelligence and machine learning 
techniques provide opportunities for 
illuminating the complex associations in energy 
consumption patterns 6.

To address the gap, a machine learning approach 
with big data analytics was used to develop a 
predictive urban building energy model and 
examine the association between urban 
socioeconomic determinants of public health and 
building energy use. A large variety of public data 
representing building stock, urban spatial patterns, 
socioeconomic status, and building energy use 
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 were used. The occupancy in energy context is 
often quantified through measuring various 
socioeconomic factors such as employment, 
education, household size, income, ownership, 
along with other socio-demographic and behavior 
factors 7. In this article, the socioeconomic and 
occupancy variables include housing crowd, 
poverty level, unemployment, education, 
dependency, per capita income, household size, 
percentage of occupied units, and total occupants. 
Herein we provide a quantitative analysis of the 
complex interplay between the socioeconomic and 
occupancy patterns on one of the main components 
of urban energy use, residential building 
operational energy consumption. Including 
socioeconomic and occupancy indicators can help 
to model urban building energy use more in-depth, 
which provides a more comprehensive view of 
households’ energy demand patterns. Chicago, IL, 
which has committed to long-term emission 
reduction goals with a focus on energy strategies 8, 
was chosen as a case study to test the framework. 

Methodology 
In the present article, energy use is defined as 
residential building operational energy use at the 
city scale within Chicago neighborhoods. The 
model incorporates the key urban attributes in the 
model include building characteristics, urban 
spatial patterns, occupancy characteristics, 
socioeconomic indicators. The model uses several 
available datasets including Chicago building 
footprints (CBF) dataset 9, Property tax data from 
the Assessor’s Office 10, Urban Sprawl data for the 
Unites States 11, Socioeconomic indicators dataset 
12, Chicago Energy Benchmarking dataset 13 

(2,717 buildings greater than 50,000 ft2), and 
Chicago Energy Usage dataset 14 (65,378 buildings 
of all sizes) to predict building energy use for out 
of sample for all buildings in Chicago where their 
energy information is not available. Then, the 
model is used to explain the association between 
variables. It explains the relative contribution of 
each variable and quantifies how key urban 
attributes affect urban energy use with a focus on 
socioeconomic indicators controlling for other 
urban attributes and building characteristics. 

The Artificial Neural Network (ANN) 15 algorithm 
is believed as a versatile machine learning 
algorithm 16 among other algorithms were tested to 
enable capturing the complex and non-linear 
relationships between socioeconomic factors of 
public health and energy dynamics across 
neighborhoods in the city. The ANN model, as a 
robust technique, enables capturing non-linear 
patterns of the complex data. Structuring the 
topology of the ANN networks and training highly 
efficient model; therefore, is a challenging task and 

is usually based on the rule of thumb approach. In 
the present article, we developed an automation 
script using nested for-loop (loop inside a loop) 
approach in R programming language to capture 
the best model in terms of performance. We used 
the cross-validation method, the 5-fold, which 
according to the previous studies is known as an 
effective method 17. 

Furthermore, ANN is known as a “black-box” 
algorithm that makes the interpretability of the 
model challenging 18. There are methods that can 
be extended to ANN’s trained model to increase its 
explanatory capabilities and allow for quantifying 
the relative contributions of each variable 19. The 
Partial Dependence (PaD) plots was employed to 
implement such computational tasks. PaD 
calculates the partial derivatives of the dependent 
variable based on the independent variables, while 
keeping other peer variables at their constant values 
(e.g., mean) 20. PaD can be plotted as profile (y~x) 
or heat-map (y~x1, x2) on trained models for all ML 
algorithms. Lek’s Profile 21 as a specific type of 
profile approach was employed in this research 
which enables exploring the explanatory 
capabilities of ANN algorithms. In Lek’s Profile, 
originally, each explanatory variable is 
investigated in which all the peer explanatory 
variables are kept at their constant levels (e.g., 
minimum, median, quartiles, and maximum). 
Then, each input variable is divided into equal 
intervals, sequenced between its minimum to 
maximum values with respect to the assigned range 
of observations. This research employed Lek’s 
Profile and heat-map methods for exploring 
relationship between explanatory and response 
variables. 

Results 
Table 1 illustrates the results of the ANN model, 
a MAPE of 4.1 indicates the predictive power for 
the urban energy use modeling for residential 
buildings in Chicago. The results show an R2 

value of 0.41, which suggests that the model 
explains 41% of the variance of building EUI in 
the model. Thus, considering the urban socio-
spatial context is essential for understanding 
energy consumption patterns in cities in order to 
address the energy reduction goals. It should be 
noted that many other influential factors (e.g., 
occupant behavior factors) would be needed to 
be incorporated into the model in order to 
provide a more comprehensive explanation for 
variations of energy use in cities because relying 
on limited factors fails to capture all the 
variance. 
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The results suggest that the occupancy and 
socioeconomic variables are strong predictors 
for urban energy use modeling, which their 
relative contribution to energy use is varied 
related to the distance to CBD, representing the 
building location. Figure 1 shows heat-map of 
the relationship between socioeconomic factors 
and distance to CBD in the urban residential 
building energy context. Buildings located 
between 5 through 10 miles away from the 
business center occupied by households with 
income ranging from $50,000 to $75,000 
account for the highest impacts on building site 
EUI. Further, the unemployment factor for the 
buildings located between 7.5 to 10 miles away 
from CBD is associated with the highest impact 
on building EUI. Regarding the education factor, 
the building site EUI spike was found to be at 
the range of 9 through 12 miles based on the 
distance to CBD. Moreover, the minimum 
building site EUI was found to be associated 
with the highest percentage of low-educated 
building occupants. The highest building site 
EUI regarding the household dependency factor 
and distance to CBD was found to be at 7 
through 10 miles and 30 through 40 percent of 
the dependency variable. The maximum impact 
of the poverty variable was captured for between 
5 to 10 miles of distance to CBD, considering 
building site EUI. And the relationship between 
the crowded housing variable and distance to the 
CBD based on building site EUI shows that the 
higher percentage of crowded housing is 
associated with higher building EUI, 
particularly those buildings located between 3 to 
10 miles away from the CBD. 

Figure 2, the Lek’s Profile result, shows how 
household per capita income (PHI) impacts 
building EUIs through considering other variables 
constant on their constant values. There are three 
ranges on the profile for building site EUI, which 
are significant including the per capita income 
ranged from $0 through $64,000, $64,000 through 
$75,000 (positive), and over $75,000 in which the 
most variation occurs within the second range. 
Hence, households with $75,000 per capita income 
represent the highest contributors on building EUI. 
The overall trend shows that high-income 
households tend to consume energy more than 
average income households. This result confirms 
the findings from previous studies on the impacts 
of income on building 22 energy use. Percentage of 
households below poverty (PHBP) variable is 
another factor in the model. Poverty variable has 
an overall negative trend with building EUI, 
meaning that with increasing the percentage of 

households’ poverty level, its impacts on the 
building EUI decreases. 

The results suggest that the impacts of 
unemployment on building EUI is a polynomial 
curve (Figure 2). The impacts is positive, and after 
a certain level, it becomes negative. This pattern 
can be interpreted that the household 
unemployment impacts building occupancy level 
and consequently it impacts the presence of 
occupants in building 23. Thus, this increases the 
presence at home, and leads to more energy 
demand for heating, cooling, lighting, and 
application of appliances. The literature suggests 
that the impact of the employment factor on 
building energy demand is a positive relationship 
24. Here the captured non-linear pattern suggests a
positive relationship at a certain point, and after
that, it becomes negative. It should be noted that
this result is specific to the case of Chicago. In 25, 
six common occupancy scenarios were modeled
for building energy use including 1) occupants
with full-time jobs, 2) retired occupants or families
with young children, 3) occupants who spend their
afternoon outside, 4) occupants with a part-time
job in the morning, 5) occupants with a part-time
job in the afternoon, and 6) occupants with a child
that goes to school. The findings of this study
suggest that the occupancy pattern has a significant
effect on the annual building energy use and
occupancy scenarios with higher unoccupied
periods show lower energy demand.

The results indicate that the total occupants (TOC) 
have a positive relationship with building site EUI 
(Figure 2). This result can be interpreted as 
increasing TOC may increase presence at home, 
and accordingly leads to higher energy 
consumption. Crowded housing (PHC) variable is 
another occupancy related variable in the model 
that shows the percentage of occupying a room 
with more than one person. The results show a 
positive linear trend with the building EUI. 
Therefore, like the former socioeconomic 
indicators, the housing PHC is an essential 
variable in developing models for urban building 
energy use. The result also suggests that the 
household dependency variable (P1864) has the 
most robust positive trend with the building EUI 
(between 40 through 43). This variable has a non-
linear relationship with the building site EUI. 
Thus, the household dependency is a strong 
predictor to determine urban building energy use 
patterns. 

The results obtained herein confirm the 
importance of occupancy and socioeconomic 
variables in previous studies such as 26 which 
examines occupancy patterns based on five factors 
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Energy model MSE RMSE MAE MAPE (%) R2
Building 0.052 0.3 0.166 4.10 0.41 

Table 1. Performance evaluation of the selected integrated building and transpiration energy use model. 

Figure 1. Heat-map plot of 6 socioeconomic factors against distance to CBD based on building EUI. 
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including 1) household size, 2) employment, 3) 
education, 4) age, and 5) income parameters 
according to three occupancy classes of high, 
medium, and low. Their results show that low 
occupancy class has the lowest average energy use. 
In another previous study 27, the occupancy factor 
was incorporated in the energy use model of a 
housing tower in London for retrofit purposes, and 
their results suggest the importance of occupants’ 
socio-demographic characteristics on energy use. 
The reasons for how occupancy and 
socioeconomic factors can impact energy use were 
examined in previous studies (e.g., 28), which 
explains the impacts through determining the 
presence and number of occupants that impact the 
building energy demand. The occupancy 
characteristics also impact the use of building 
systems (such as lighting and appliances), and heat 
gain, because of occupants’ metabolisms and 
activities, and HVAC loads due to interactions 
with building components (such as adjusting 
openings, windows, and doors) 29. However, a 
number previous studies, for example, 30, argue 
that the relative contribution of occupancy, socio-
demographics, occupants’ behavior, and attribute 
are significantly lower than building 
characteristics. The findings of these studies 
suggest that building factors (e.g., size, household 
size, ownership, etc.) explain most of variability in 
residential energy use, and socio-demographic 
factors show relatively slight explanatory power 
and are not significant predictors. 

Conclusion 
This article provides insight on the impacts of 
socioeconomic indicators on residential 
building energy use at urban scale. The results 
from PaD and Lek’s Profile methods applied in 
our research suggest that occupancy and 

socioeconomic patterns are among the 
important determinants of urban building 
energy use. The results show that urban energy 
use of residential buildings is affected 
considerably by urban spatial patterns and the 
socioeconomic factors. The novelty of this 
research is the inclusion of these factors into 
building energy use modeling, and applying the 
artificial intelligence-based approach, ANN 
method extended with an explanatory model by 
means of PaD and Lek's Profile. This enables 
developing an effective predictive model and 
illuminating complex patterns to explain the 
contribution of each variable to the model. 
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